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Behavior of fractional diffusion at the origin
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The present work discusses the fractional diffusion equation based on the Riemann-Liouville fractional time
derivatives. It was shown that the normalization conservation constraint leads to the divergency of diffusive
agent concentration at the origin. This divergency implies an external source of the diffusive agent atr→0.
Thus, the Riemann-Liouville fractional time derivative implies a loss of diffusive agent mass, which is com-
pensated for by the source of this agent at the origin. In contrast, the absence of the normalization conservation
constraint does not lead to any divergences in the limitr→0 and at the same time provides the decay of
normalization.

DOI: 10.1103/PhysRevE.68.030102 PACS number~s!: 05.60.2k, 05.40.Fb
c
f
Ex

o

la

-

at

tio

rs
ur

s
th
na
y
es

in
o
e

on
n

n
a
th
ac
a-
m
le
if-

e
t
e
-

er

s
of
two

e

n

n.

ci
u

Today, anomalous diffusion transport is a widely a
knowledged phenomenon@1–4#. It is detected by a variety o
experimental techniques in different physical systems.
amples of this phenomenon are numerous. It occurs in am
phous semiconductors@5,6#, polymers@7–9#, composite het-
erogeneous films@10#, porous media@11,12#, and many other
systems~for references see a recent review@4#!. The distin-
guishing feature of anomalous transport is the power
time dependence for the mean square displacement^x2&
;ta. For 0,a,1 this process is usually called ‘‘subdiffu
sion’’ while for 1,a it is referred to as ‘‘superdiffusion.’’ To
describe this phenomenon many authors employ the m
ematical technique of fractional time derivatives@4,13–17#.
Therefore these processes have also been named frac
diffusion processes after the method@18,19#. In many works
the authors replace the integer time derivative of the fi
order in the diffusion equation by a fractional one on a p
mathematical or heuristic basis@13–17#. However, there are
works that prove the validity of the fractional derivative
method for the anomalous diffusion problem based on
continuous time random walk approach and the fractio
Fokker-Planck equation@4,20–23#. Nevertheless, the variet
of existing mathematical definitions for fractional derivativ
~see Ref.@24# and references therein! leads to the possibility
to discuss various types of fractional derivatives, depend
on the physical situation. Sometimes this leads to many c
ceptual difficulties in interpretation of the results. At th
same time the nonlocal form of a fractional time derivati
touches very basic ideas such as irreversibility, locality, a
invariance under the time translations@19,25#. Therefore, the
physical interpretation of a partial differential equatio
which involves a fractional time derivative is not a very cle
issue today. One possible way to clarify this problem is
consecutive analysis of different ways to introduce a fr
tional time derivative into a differential equation, investig
tion of the limiting cases, and comparison between the
The purpose of this work is to discuss two different examp
of how to introduce a fractional time derivation into the d
fusion equation.
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We will be concerned with equations

]

]t
f ~r ,t !5Ca 0Dt

12a@D f ~r ,t !# ~1!

and

0Dt
a@ f ~r ,t !#5CaD f ~r ,t !, ~2!

where f (r ,t) denotes the unknown field of the diffusiv
agent concentration,Ca is the fractional diffusion constan
with dimension@m2/sa#, D denotes the differential Laplac
operator and0Dt

a is the fractional Riemann-Liouville deriva
tive operator of order 0,a,1 and with the lower limitt
50,

aDx
g@ f ~x!#5

d

dxaI x
12g@ f ~x!#, ~3!

where

aI x
«@ f ~x!#5

1

G~«!
E

a

x

~x2y!«21f ~y!dy ~4!

is the Riemann-Liouville fractional integral operator of ord
« with a lower limit a andG(«) is the gamma function.

Both Eq. ~1! and Eq.~2! intend to describe anomalou
diffusion transport. However, from a mathematical point
view they are not equivalent. They may be regarded as
different examples@24# of introducing a fractional derivation
through the Riemann-Liouville fractional integral~4!. Obvi-
ously, the Riemann definition~3!, the ‘‘right-hand side’’ defi-
nition, may be replaced by the ‘‘left-hand side’’ or Liouvill
definition aD̄x

g@ f (x)#5aI x
12g@d/dx f(x)#. Upon applying

0I t
12a to Eq. ~1! one sees that Eq.~1! can be represented i

the form 0D̄t
a@ f (r ,t)#5CaD f (r ,t), which is similar to Eq.

~2!.
Another important consideration is the initial conditio

Equation~1! requires an initial condition in the formf (r ,0)
5g(r ) or, in particular, for the Green function

f ~r ,0!5 f 0d~r !, ~5!
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whered(r ) is the Dirac measure at the origin andf 0 is the
strength of the initial pulse of concentration at the origin.
contrast, Eq.~2! requires the initial condition for the Gree
function in the form@19,25#

0I t
12a@ f ~r ,0!#5 f 0,ad~r !, ~6!

where f 0,a is once again a constant.
The exact solutions of both Eq.~1! with initial condition

~5! and Eq.~2! with initial condition ~6! are known@19,26#
and represented through the FoxH functions@27# as

f ~r ,t !5
f 0

~pr 2!d/2
H12

20S r 2

4Cata U ~1,a!

~d/2,1!,~1,1!D ~7!

for Eq. ~1! and

f ~r ,t !5
f 0,ata21

~pr 2!d/2
H12

20S r 2

4Cata U ~a,a!

~d/2,1!,~1,1!D ~8!

for Eq. ~2!. Hered is the Euclidean dimension of the spa
where the diffusion occurs.

Upon introducingz5r 2/4Cata and using theH-function
definition @27# in the case of Eq.~7! one obtains ford51,

f ~z,t !5
f 0

A4pCata (
k50

`
~2z!k

k! S G~1/22k!

G„12a~1/21k!…

1
G~21/22k!Az

G„12a~11k!…
D ; ~9a!

for d52,

f ~z,t !5
f 0

4pCata

3 (
k50

`
2c~11k!2ac„12a~11k!…2 ln~z!

k! 2G„12a~11k!…
zk;

~9b!

and ford53,

f ~z,t !5
f 0

~4pCata!3/2 (
k50

`
~2z!k

k! S G~21/22k!

G„12a~3/21k!…

1
G~1/22k!

G„12a~11k!…Az
D , ~9c!

wherec(x) is the logarithmic derivative of the gamma fun
tion. Solution~8! gives ford51,

f ~z,t !5
f 0,ata/221

A4pCa
(
k50

`
~2z!k

k! S G~1/22k!

G„a~1/22k!…

1
G~21/22k!Az

G~2ak!
D ~10a!
03010
for d52,

f ~z,t !5
f 0,a

4pCat (
k50

`
2c~11k!2ac~2ak!2 ln~z!

k! 2G~2ak!
zk;

~10b!

and ford53,

f ~z,t !5
f 0,at2a/221

~4pCa!3/2 (
k50

`
~2z!k

k! S G~21/22k!

G„2a~1/21k!…

1
G~1/22k!

G~2ak!Az
D . ~10c!

Note that both Eq.~7! and Eq.~8! imply axial symmetry of
f (r ,t) for d52 and spherical symmetry ford53. The key
point is that only solution~7! has a probabilistic interpreta
tion for f (r ,t) since only for this equation normalizatio
holds constant while for Eq.~8! normalization decays
@19,25# as ta21.

Despite the fact that solutions~7! and ~8! are already
known @19,26# it seems that representations~9! and ~10!
have not been derived before. Figure 1 presents some
amples of Eqs.~9! and Eqs.~10!.

It was mentioned perviously@19# that the nonlocal form
of the initial condition~6! leads to the divergence off (r ,t)
for t→0. Recent works@25,28,29# discuss this fact in rela-
tion to the fractional stationarity concept which establish
in addition to the conventional constants, a second clas
stationary states that obey power law time dependence.

Let us further discuss the behavior of the fractional diff
sion at the originr→0 for different dimensionsd. From Eqs.
~9! for t.0 one immediately obtains in the case ofd51,

FIG. 1. Schematic picture presentingf (r ,t) vs r for the different
time moments. The upper row corresponds to Eqs.~9!. The bottom
row corresponds to Eqs.~10!. The solutions ford51 are in the
left-hand panels, ford52 in the middle, ford53 on right-hand
side. Curves with label 1 are calculated fort50.01, with label 2 for
t50.1A0.1, with label 3 fort50.1, with label 4 fort5A0.1, and
with label 5 for t51. For numerical evaluationsa50.7, Ca51,
f 051, and f 0,a51 were used.
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lim
r→0

f ~r ,t !5
f 0

2G~12a/2!ACata
; ~11a!

in the case ofd52,

lim
r→0

f ~r ,t !5 lim
r→0

f 0ln~4Cata/r 2!

4pG~12a!Cata
; lnS 1

r D ; ~11b!

in the case ofd53,

lim
r→0

f ~r ,t !5 lim
r→0

f 0

4prG~12a!Cata
;

1

r
, ~11c!

while Eqs.~10! for t.0 give in the case ofd51,

lim
r→0

f ~r ,t !5
f 0,ata21

2G~a/2!ACata
; ~12a!

in the case ofd52,

lim
r→0

f ~r ,t !5
a f 0,a

4pCat
; ~12b!

in the case ofd53

lim
r→0

f ~r ,t !52
f 0,ata21

4pG~2a/2!~Cata!3/2
. ~12c!

Thus, the solution of Eq.~1! with initial condition ~5! for
any t.0 is finite for d51, exhibits logarithmic divergence
for d52, and diverges as 1/r for d53, while the solution of
Eq. ~2! with initial condition ~6! is always finite at the origin
r→0 @see Eqs.~11!, Eqs.~12!, and Fig. 1#.

Let us discuss the heuristic merit of the results deriv
The key difference between Eq.~1! and Eq.~2! is the con-
servation of the normalization for solution~7! and the decay
of the normalization for solution~8!. This normalization con-
straint for Eq.~1! was introduced in order to provide th
probabilistic interpretation for the diffusive particle conce
tration f (r ,t) of Eq. ~7! and to obtain a consistent correspo
03010
.

dence between the fractional diffusion and conventional
fusion. However, solution~7! exhibits divergency off (r ,t)
at the origin ford52 andd53, while the conventional dif-
fusion equation does not lead to any divergencies for
Green function@30# at the limit r→0 andt.0. In the case
of the classical diffusion equation such divergences im
constant sources of the diffusive agent at the origin. Th
one could conclude that a fractional derivative either0D̄t

a or

0Dt
a , implies the loss of diffusive agent mass. However,

the case of Eq.~1! this deficit is compensated for by th
‘‘virtual source’’ of diffusion agent at the origin while for Eq
~2! this fact results in decay of normalization. For the fra
tional time derivatives based on the Riemann-Liouville fra
tional integral this conclusion is independent of the ordera.

The ‘‘virtual sources’’ of diffusion agent at the origin fo
Eq. ~1! mean that some mass injected at the origin. Howev
this injection is not defined by the boundary conditions of t
problem. Thus, the presence of such ‘‘virtual sources’’
solutions~7! and~9! is physically meaningless and one nee
to resolve this contradiction. A possible way to solve th
problem is to use some regularization methods, as has b
done for the modified porous medium equation of Bare
latt’s type@31#. Such a regularization of Eq.~1! would be the
subject of future investigations.

Another interesting observation is that replacement of
‘‘left-hand side’’ definition of the fractional time derivative
with the ‘‘right-hand side’’ definition affects limr→0f (r ,t),
which depends on the space variabler. Thus, in a sense, the
divergence off (r ,t) at r→0 for Eq.~1! could be replaced by
a nonlocality of the initial condition~6! at t→0 for Eq. ~2!.
This time-space relationship is not an unexpected finding
hints for us to pay attention to the variational formulation
the diffusion type equation in view of the fractional calcul
and the fractional stationarity concept@25,28,29#. This prob-
lem would be a direction for future investigation.
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